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ABSTRACT

A numerical technique for the analysis of turbulent flow
associated with combustion 1is presented. The technique utilizes
Chorin's RVM (Random Vortex Method), an algorithm capable of tracing
the action of elementary turbulent eddies and their cumulative effects
without imposing any restriction upon their motion. In the past RVM
has been used with success to treat non-reacting turbulent flows,
revealing, in particular, the mechanics of large scale flow patterns,
the so-called coherent structures. Introduced here s a flame
propagation algorithm, also developed by Chorin, 1in conjunction with
volume sources modeling the mechanical effects of the exothermic
process of combustion. As an illustration of its use, the technique
is applied to flow in a combustion tunnel where the flame is
stabilized by a back-facing step. Solutions for both non-reacting and
reacting flow fields are obtained, under the restriction of a set of

most stringent  idealizations, mimicking nonetheless quite



satisfactorily the essential features of turbulent combustion in a
Tean propane-air wixture that were observed in the laboratory by means

of high speed schlieren cinematography.
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NOMENCLATURE
area
(TmTu)/(Tmeu)s reaction progress parameter or reactedness
influence factor of a vortex sheet
vb/vcs fractional volume of burned medium in a cell
dz/dZ, differential transformation function
length of a vortex sheet
side length of a cell
the Green's function
width of the channel

time step

reference length

T



I=s

2 ot

number of vortex blobs

number of source blobs

unit vector normal to solid boundaries
E/pgwg nonmdimensioné1 pressure
pressure

(x,y), position vector

blob core radius

pgmﬁ/ZMS Reynolds number

unit vector tangential to solid walls
normal burning velocity

time

tu /L, non-dimensional time

temperature



i

(u,v), non-dimensional velocity vector
non-dimensional velocity component in the x-direction
inlet velocity

non-dimensional velocity component in the y-direction
volume

u-iv, complex velocity

non-dimensional Cartesian space coordinates

x+iy, complex position coordinate in the physical plane
I Edy, circulation per unit length

J EdA, circulation

Dirac delta function

thickness of the numerical shear layer

source strength



local rate of expansion

complex position coordinate in the transformed plane

Gaussian random variable

dynamic viscosity

Tb/Tug temperature, or specific volume ratio

VXxu, vorticity

density

v2k/R, standard deviation

equivalence ratio

velocity potential

stream function

Laplacian operator



Subscripts

b - burned medium

C - cell

flame front

.
§

i - point 1in space

J - vortex element

p - potential flow produced by y_
S - spource velocity

u -~ unburned medium

€ - produced by combustion

g -~ produced by’turbuience

o -~ due to combustion

Superscript

~ - complex conjugate



INTRODUCTION

Numerical analysis of turbulent flow has been traditionally based
on some form of finite difference treatment of appropriately averaged
Navier-Stokes equations, supplemented by an adequate set of relations
to correlate the turbulent flow parameters--the closure model. For
this purpose it s customary to apply first the Reynolds splitting
principle to all the dependent variables. Each term in the governing
equations s then appropriately averaged. This may involve either
time, or ensemble, or Favre mass averaging, depending on whether one
is seeking a steady state, or a time dependent, or a compressible flow
solution. Due to the non-linear nature of these equations, double
correlations of the fluctuating components arise, while the averaging
process involves essentially an integration, as a consequence of which
a certain loss of information is ‘incurred. The usual way to remedy
this situation is to introduce a system of relations between these
correlations and some mean flow parameters—-the closure relations. To
obtain a numerical solution, a finite difference technique is then
applied, yielding the description of the flow field in terms of
discrete values of its parameters on the nodes of a Eulerian mesh.

The ACDM (the Averaging-Closure-Differencing Method described
above) has been wused in a multitude of variations, producing
satisfactory results in good agreement with experimental data for a
wide assortment of turbulent flow problems. Work in this field has
been reviewed recently by Mellor (1979), McDonald (1979), and, with

particular reference to modern methods based on the use of PDF (the
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Probability Density Function), by Williams and Libby (1980),
demonstrating the value of ACDM as a powerful analytic tool for the
study of turbulent combustion.

However ACDM 1is handicapped by a number of drawbacks. Of this,
the following are particularly relevant to the problem at hand:

(1) The averaging process deprives the equations of essential
information about the mechanism of turbulence; this necessitates the
introduction of turbulence models on heuristic grounds rather than
obtaining information about them from the solution.

(2) The turbulence model required for the closure relations has to
be postulated and the value of its parameters have to be adjusted to
match experimental data.

(3) The finite difference technique introduces numerical diffusion
which tends to smooth out Tlocal perturbations, an effect that is
especially harmful at high Reynolds numbers when vregions of
substantial shear arise in the flow field; the effect of ACDM in this
respect is to  curtail the Reynolds  number, causing  the
misrepresentation of some of the most essential features of the flow
field.

(4) The effects of exothermic processes of combustion on the flow
field are particularly difficult to handle by ACDM; as pointed out
over 5 years ago by Williams (1974), these processes cause many-fold
increases in specific volume and occur at rates which are relatively
so high that taking them properly into account in a finite difference

scheme is associated with practically insurmountable difficulties.
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A1l these drawbacks are especially catered to by RVM (the Random
Vortex Method) developed by Chorin (1973). This method was designed
to develop a satisfactory approximation to the solution without
differencing the equations. Essential features of the flow field
governed by the Navier-Strokes equations are mimicked by the action of
vortex elements that model the essential ingredients of turbulence,
the elementary eddies. Their random wa1k§ express the effects of
diffusion, while compliance with the tangential boundary condition at
the walls is assured by creation of vorticity in the proper amount. A
potential flow solution 1is used at the same time in accordance with
the principle of fractional steps to guarantee that’ the normal
boundary condition is satisfied.

The RVM keeps track of the position and strength of all the vortex
elements constituting the flow field .and is thus essentially
grid-less. It is therefore devoid of the smoothing intrinsic to the
finite difference technique and unaffected by the numerical diffusion
it introduces.  Above all RVM does not involve any averaging
whatsoever. On the contrary, instead of damping the disturbances, it
actually introduces a certain amount of randomness, or numerical
noise, simulating the mechanism of Tlocal perturbations in a way
similar to the one which occurs in real flow.

Partial convergence proofs for RVM have been provided by Chorin et
al. (1978) and Hald (1979). In particular, the error in the solution
was shown to be proportional to the inverse of the square root of the

Reynolds number, furnishing further evidence of the eminent



suitability of RVYM to the analysis of turbulent flows. Its success in
this respect has been amply demonstrated by solutions obtained for
flows around solid bodies {(Chovin, 1973; Cheer, 1979), shear layer
effects, Ashurst (197%, 1979b) and internal flows, McCracken and
Peskin (1980). As pointed out by Roshko (1976), it was indeed
instrumental in revealing the mechanics of large scale turbulence
patterns, the so-called "coherent structure," by elucidating such
features as the shear layer mechanisms, processes of eddy shedding,
their growth, intertwinning, and pairing.

The most prominent aspects of RVM are presented here from an
entirely pragmatic point of view. The algorithm, augmented to
accommodate the effects of flames, is then applied to the analysis of
turbulent flow with combustion stabilized in the recirculation zone
behind a step.

Salient features of such a flow field are displayed in Fig. 1, a
selection of cinematographic schlieren records presented by Ganji and
Sawyer (1979). The large scale vortex pattern characteristic of the
"coherent structure" is clearly discernible, while flame front 1is
recorded by dark streaks, Toci of maximum gradient in refractive index
reflecting the vrapid change in density and temperature due to
combustion. The records were obtained for a propane-air mixture at an
equivalence ratio of 0.57, initial temperature of 295°K flowing at a
velocity of 13.6 m/sec (Reynolds Number 2.2 X 104) in the inlet
channel, Z2.54 com wide, into a test section 5.08 cm wide, and 17.3 cm

deep. There are two sequential series made out of extracts from the
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same high speed movie. The one on the left shows the process of the
coalescence of eddies and their intrusion into the recirculation zone
at time intervals of 1.22 msec between frames. Displayed in the
column on the right side is the normal formation, and development of
eddies in the mixing zone at time intervals of 1,16 msec.

The analysis 1is restricted by a formidable array of simplifying
idealizations. However, it should be stressed, this is not tantamount
to restrictions of the RVM itself. The principal raison d'etre for
our idealizations is simplicity. As for the first practical
application of a new method to combustion, it is indeed obvious that
the simplest case is most appropriate. It serves as the point of
departure for the treatment of more complicated situations and
moreover simplicity has a definite bearing on the economy of
computation. The techniques we can develop on the basis of the simple

case should be of benefit to future work on more involved problems.
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PROBLEM

According to the arguments prescribed in the Introduction, the

problem

we treat is formulated on the basis of the following

idealizations:

Thus

physical

the flow is two-dimensional i.e., strictly planar;

the flowing substance consists only of two incompressible

media, the unburned mixture and the burned gas;

the flame 1is treated as a constant pressure deflagration

acting as an interface between the two media, and propagating

locally at a prescribed normal burning velocity;

the exothermicity of combustion is manifested entirely by an

increase in specific volume associated with the

transformation of one component medium into the other.
completely neglected are, vrespectively, the following

phenomena:

three-dimensional effects, in particular vortex stretching;

compressibility effects, in particular acoustic wave

interactions;

chemical kinetic effects and molecular diffusion, in

particular the flame structure, as well as the influence of

the state and composition of reactants on its propagation

velocity;

thermal effects, in particular all the thermodynamic

properties of the substance and the heal transfer processes.
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It should be noted that the above is consistent with the well
known model of thin flame, or infinitely fast kinetics, used widely
for the analysis of mixed controlled turbulent combustion.

As a consequence of these idealizations, the continuity and the
Navier-Stokes equations governing the flow field can be expressed in

the following simple form:

Vu = elrg) (1)
Du
e -1.2
b= R VU -9 (2)
where u = (u,v) is the velocity vector normalized by the inlet

velocity u ., € %s the corresponding local rate of expansion,

r = (x,y) is the position vector normalized by L, the reference

length, t - the time normalized by E/gwg R - the Reynolds Number and
- the pressure normalized by pU_s0 denoting the reference density

of the medium, subscript f refers to the flame front, while

D 3 .
BT 3F UV

is the substantial derivative, Vo~ the Laplacian and V is the
usual del or nabla operator.
The flow field is specified by the solution of these equations,

subject to the boundary conditions
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=0 along all solid boundaries (3)
u = (1,0) at inlet (4)

The distribution of ¢ s determined by the location of the flame

frong, T s which is governed by the flame propagation equation

DE = Sul (5)

where 5, is the normal burning velocity, while ng s the unit

vector normal to the flame surface.
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PROCEDURE

The procedure is based on the principle of fractional steps (viz.
e.g., Lie, 1889; Samarski, 1962) according to which the governing
equations are split into a sum of elementary components and the
solution is determined by treating these components in succession.

The essential element used for this purpose is the vorticity

E=Vxu (6)
which 1is introduced by expressing Eq. (2) in terms of its curl, the

vortex transport equation,

%%.x R“lvzg
while, it should be recalled, V x Vp = 0.

The flow is thus described by Egs. (1), (6) and (7).

Equation (1) and (6) are wused to determine the velocity
field, u(r), while, in accordance with the principal feature of RVM,
Eq. (7) s employed to wupdate the wvorticity field, &(x,y).
Then e(x,y) is determined by the flame propagation algorithm we
developed for the solution of Eq. (5).

Thus u is  decomposed into a  divergence free  vector
field u

£ and a curl free field u_ where

u=uptug (8)

In doing this we exploit the Hodge decomposition theorem (viz.

Batchelor, 1969; Chorin and Marsden, 1979). The governing equations
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gg and u, are then obtained immediately by the substitution

of Eq. (8) in Egs. (1) and (6).

and

Zﬁﬁg =0 (9)
VXU, = & (10)
Veu_ =€ (11)
Vxu = 0 (12)

Both ~ig and U, are required to satisfy to zero normal velocity

boundary condition independently, namely

where n is the unit vector normal to the walls.

However, only the total velocity, u, is required to satisfy the

no-slip condition

us =0 (15)

where s is the unit vector tangent to the walls.
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The structure of the algorithm is described schematically in form
of a block diagram 1in Fig. 2. There are two loops, one for handling

vortex dynamics, and the other for flame propagation. These are

Tinked together to yield the total velocity field. Key elements in
the first Tloop are vortices, transported by diffusion and convection,
the fractional steps of Eg. (7). Key elements in the second loop are
volume sources, monitored by advection and combustion, the fractional

steps of Eq. (5).
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VORTEX DYNAMICS

The mechanism of turbulence 1is described in essence by vortex
dynamics. This process is evaluated here by first determining the
velocity field u , that is produced by a given vorticity distribution,

(x,y), according to Eqs. (9) and (10) with the zero normal velocity
boundary condition, Eg. (13), and then updating the vorticity field in
accordance with the vortex transport equation, Eq. (7), implementing
at the same time the no-slip boundary condition, Eg. (15).

As the principal feature of RVM, the flow field is expressed for
this purpose in terms of discrete elements, the so-called vortex blobs
and vortex sheets. Their properties are presented here in turn.

(a) Vortex Blobs
In order to derive the properties of vortex blobs, Eg. (10) is

expressed in ferms of the stream function,

VY = - E (1.1)
where

_ _ 3y

U=3y 5 V= (1.2)

so that Eg. (9) is satisfied exactly,

The velocity 1is then described in terms of
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where § is the Dirac delta function and

o= Lim J ¢ dh (1.4)
AAj%O AAj

1]

is the circulation of a vortex ar .igs while ?j is acting on area

AAja The solution of Eq. (1.1) is expressed by the Green's function

.
6(rory) = 53 loglr - r;| (1.5)

representing the field of a potential vortex.
Equation (1.5) can then be used to construct a solution to Eg.

(1.1) for a general distribution of & in the form

Wy = | sy sty o (1.6)

where A is the area of the flow field. The above integral can be
evaluated as a sum of all the contributions of &, after it had been
partitioned into discrete elements gjg The elementary vorticity,
g“s
J
the area where 1t exists, aA

is a function of small support that tends to a delta function as
’E approaches zero, This process
requires smoothing of the function in Egq. (1.5) to eliminate the
singularity at its center (Chorin, 1973)., Thus, the integral in Eq.

(1.6) becomes

wzgejrj (1.7)
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in which case

whevre gAj is  finite, while Gj is the corresponding  smooth

Green's function at Yy (Chorin, 1973; Hald, 1980).

The elementary component of the flow field specified by Eq. (1.7)
is called a vortex blob. The volicity field it produces in free
space, i.e., one without boundaries, is obtained by substituting Eqg.

(1.5) 1into Eq. (1.2) and smoothing G around the center, For this

purpose it is written, using complex variables, as follows:

%_QD{ZSZS) = Z%Mé){(fz - Zj' X r@) (Z — Zj) (198)

where W = u - v, i = /I, Z = x + iy while ro is the cut-off
radius, i.e., the radius of the core within which |u| is constant,
in compliance with the smoothing requirement for the function
expressed by Eg. (1.5). The velocity distribution of a blob is
displayed in Fig. 3.

In order to satisfy the boundary condition given by Eg. (13) we
use conformal mapping to ftransform the flow field into the
upper-half g-plane, and add the velocity produced by the image of

vortex Qj@ The corresponding velocity field in the L -plane produced

by a vortex blob at ¢,

i is thus given by
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wg(cscj) = ww(cscj) - ww(csij) (1.9)

where ww(csgj) is given by Eq. (1.8).

The boundary condition of Eg. {(4) 1is taken care of by the
velocity wp(g) of the potential flow produced by a unit velocity
at the inlet. The total velocity produced by a set of Jb vortex
blobs, including the effect of flow at the inlet, is thus

Jp
= W + . 1.10

We (D) = Mp(z) + ) We(e,y) (1.10)

j=1

To deduce the solution in the physical domain, the Z-plane, one

applies then the Schwarz-Christoffel theorem to specify the

differential of the transform function

%%g F(C) (1911)

for a given geometry of the flow field. Since then

W(Z) = W(z) F(z) (1.12)
the velocity vector, Ugs in Eq. (8) is thus determined.

The vorticity, &£(x,y), 1is updated at every computational time
step, k, by solving Eq. (7) in fractional steps made up of the

contribution of the convention operator

DE
L (1.13)

and that of the diffusion operator
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2 Rlvée (1.14)

According to Eq. (1.13), vortex blobs move at appropriate particle
velocity specified by Eq. (8).

The solution corresponding to a time step, k, of a one-dimensional
component of the diffusion equation, Eq. (1.14), when the initial
condition is given by the Dirac delta function, s(0), is the Green's

function
-1/2 2
G(x,k) = (ﬁ%5> exp(== E%?) (1.15)

This is the probability density function of a Gaussian random
variable with zero mean and a stanéard deviation of o = /2k/R ! Thus,
if the initial vorticity dis split into a set of discrete vortex
elements and each of them is given a displacement from the origin by
an amount drawn from a set of Gaussian random numbers of an
appropriate variance, it provides an approximation to Eg. (1.15) by
sampling. When a general distribution of vorticity &(x) is given,

the exact solution after time k of Eg. (30) is

v(x) = JA G(x=x',k) &(x") dx' (1.16)

where vy denotes the circulation per unit Tlength, while G is given
by Eg. (1.15). The probabilistic counterpart of this solution is
obtained by displacing each vortex element from its
position x' through a distance Ny The vrandom walk s then

constructed by vrepeating this procedure at each time step.
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Two-dimensional random walk is treated in essentially the same way,
the vortex elements being moved in two normal directions x and y, by
two independent Gaussian random variables with zero mean and a
standard deviation of ¢ = v2k/R.

The convection and diffusion contributions 1in the Z-plane are

combined, according to Eqg. {(7) by the summation

At k) = Z.(8) + W(Z, + . 1.17
Zi(t * k) = 2y(t) +H(Zy) k * ng (1.17)
where W = wg + wg and njo= Ny + iny or, in the g-plane by
using its transform
At + k) =, +W(c.) Flc.) Flo.)k + n.F(z, .
gyt + k) = oy(t) + Wi(zy) Flz;) Floy)k # nF(zy) (1.18)

Since the velocity is calculated in the Z-plane by implementing Eq.
(1.10) the use of Eg. (1.18) 1is more straightforward and hence more
economical then that of Eq. (1.17).

To satisfy the no-slip boundary condition expressed by Eq. (3),
the velocity, W, has to be calculated at a number of points along the
wall. The points are selected to be a distance h apart along each
wall, Wherever the tangential velocity u, at wall 1is not zero, a
vortex with a circulation uyh s created and included in the
computations at the next time step, according to Eq. (1.17) or Eq.
(1.18). However, this procedure of vorticity creation is not accurate
since on the average one half of the newly created blobs is Tost

through diffusion across the wall. This implies that Kelvin's theorem
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is not satisfied exactly and the accuracy near the wall 1is poor.
Furthermore, vortex blobs do not provide a good description of the
flow near solid walls where velocity gradients are very high, because
inside the core of a blob the velocity is considered to be constant.
This motivates the introduction of vortex sheets to take up the role
of blobs in shear layers at the walls.

(b) Vortex Sheets

If we take x to be the direction along a wall and y the normal
to it, the following two conditions are known to prevail in the shear
layer immediately adjacent to it:

1. av/iax << sufay (1.19)

2. diffusion in the «x-direction is negligibly small in

comparison to convention in this direction.

A vortex element constructed on the basis of these conditions is
referred to as the vortex sheet,

As a consequence of Eq. (1.19), Eg. (10) is reduced to

] (1.20)

The above, in conjunction with Eq. (9), determines Eg(i) as follows.

Integrating Eq. (1.20) fromy = & the outer edge of the numerical

S?
shear Tayer at the wall, to Yis one obtains,
8¢
uﬁui)mtdxpy” mm[ £ dy (1.21)
i

where Us isuat y= Seo
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The above integral can be transformed into a summation by
partitioning the value of & along y and defining the circulation of

a vortex sheet per unit length as

y»;+Ab’

Yy = Lim £ dy (1.22)
A
>0 v;

If a sheet has a length h, then its circulation, Fj% is

F.: o “0 N
; h YJ (1.23)

and from Egs. (1.21) and (1.22) the velocity jump across it, AU,

per unit sheet length is

AU, = v (1924)

Unlike the "elliptic" flow modeled by vortex blobs, where the
effect of each blob extends throughout the field, as a consequence of
Eg. (1.21) the zone of influence of a vortex sheet 1is restricted to
the ‘“shadow" below 1it, as indicated by the regions marked by
right-hand slants in Fig. 4. Thus, the flow velocity at a point

(xisyi)S where y, < Y3 1s determined by the relation

u(xjsyj) = ud(xi) - % dej (1.25)

a summation counterpart of Eq. (1.21) according to Egs. (1.22) and
(1.24) while

IX: - x|
e ] - J
dj = 1 ;
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is the influence factor of sheet j on point i, expressing the fraction
of its length extending over the zone of dependence over point i,
indicated by left-hand slants in Fig. 4.

The value of v is determined by the integration of the expression

~

Y

1
YV = - ‘”gs(“ }( u dy (1*’26)

G

obtained from FEq. (9) using u(xiﬁyi} as evaluated from Eq,
(1.24).

For this purpose cne introduces
(y? i
- 1y = ) - - . - d.y.
I = ) udy = u(x1) ¥; y du u(xj) z ) deJyJ (1.27)
0 0 J
where, taking advantage of £q. (1.24), au has been replaced by

yjdja In finite difference form, Eq. (1.26) becomes then

where, according to Eq. (1.27), using Eq. (1.25) for u(X.),

-

o4 h - * ‘jt
I =u (Xj- “’2‘“) y1 EYJYJGJ (1929)

while, as indicated in Fig. 4,

h
(Xi i:“g””"xj)

h

ES
{1, = 1 -
“
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and

y* = Min(y;ny4)

The motion of the sheets 1is governed by an equation identical to
Eq. (1.17), but with u evaluated from Eq. (1.25) and Eq. (1.29) while
ny = 0+ inys in accordance with condition (2) stated at the
beginning of this section. To make sure that the motion of a vortex
sheet 1is matched wiﬁh the vortex blob it can generate, a correction
term has to be added to Eg. (1.25) in order to account for the effect
of the image of the blob. According to Chorin (1978), this is equal
to -1/2 Yy A number of techniques to reduce the statistical error
and speed up the convergence of the vortex sheet algorithm has been
suggested by Chorin (1978),

(c) Algorithm

The above concepts are implemented as follows:

First the value of h, the sheet length specifying the spatial
resolution, is chosen. The value of the time step, k, is then fixed
in accordance with the Courant stability condition, k < h/max u
(Chorin, 1980a). For a given Reynolds number, this specifies the
standard deviation o. The thickness of the numerical shear Tlayer 8
is then taken as a multiple of ¢ whereby, as shown in Fig. 5, the Tloss
of vortex blobs due to their random walk is minimized. Finally, the

number of sheets initially in the stack s chosen, Tlimiting the

maximum altlowable value for v.
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At time zero only the incoming flow u_(r) exists. The resulting

p
velocity along the wall is fixed by the potential flow solution of Eq.
(1.1). The displacement of the sheets in the numerical shear layer is
then calculated, using Eq. (1.17) with velocity specified by Eg.
(1.25) and Eg. (1.28). The various possibilities that may occur due
to vortex sheet displacement are illustrated in Fig. 5. When a sheet
gets out of the boundary Tlayer, it becomes a blob with a total
circulation adjusted according to Eq. (1.23).

The core radius, o is then fixed in such a way that the
no-slip boundary condition is satisfied. To do so with a minimum
error, one sets o > Seo The velocity at the wall produced by

the blob and its image is then, in accordance with Eg. (1.9),

whence, by virtue of Eq. (1.23) and (1.24) with Mg = Uy,

room e (1.30)

providing an explicit relation between the length of the vortex sheet
and the core radius of a vortex blob.

If a sheet gets out on the other side of the wall, it becomes
restored by its mirror image either in the shear layer as a sheet or

in the flow field as a blob, as depicted in Fig. 5.
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Corresponding displacements of vortex blobs are calculated by the
use of Eq. (1.18) with their velocities evaluated from Eq. (1.10).
Again, Fig. 5 displays the various ways in which a blob can be
transformed into a sheet. The last possibility of losing a vortex
blob is minimized by the right choice of §gs S already pointed out.

Once the position and strength of both the sheets and blobs are
established, the flow field at a given time step is  fully
determined. It should be noted that vortex blobs appear only as a
consequence of the displacement of vortex sheets outside the boundary
layer, modeling the mechanism of the generation of turbulence under
actual flow conditions.
(d) Results

The Z-plane and t-plane for flow over a rearward facing step are

presented in Fig. 6. The functions wp and F are

iy (e) = & (1.31)
and
1/2
Fz) = %(%%—%} (1.32)

where, as shown in Fig. 6, H is the height of the channel.
The results of computations for turbulent flow behind a step of

the same geometrical proportions as Fig. 1, corresponding to Reynolds

4

Number of 107 at inlet, or for 2.54 cm width of the channel in the
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experimental apparatus, u = 6 m/sec, are shown in Fig. 7. Included
there are two sequential series of computer outputs. The one on the
left describes the development of the flow field by presenting vortex
velocity vector fields tracing the motion of all the vortex blobs
included in the solution at successive time intervals, each equal to
50 computational steps of 0.1 H/2 u_ sec. The one on the right shows
the growth of a large scale eddy traced at time intervals equal to 5
computational steps.

A velocity vector s represented there, as usual, by a line
segment providing information on its magnitude and direction.
However, instead of being furnished with the conventional arrowhead,
it is attached at its origin to a small circle denoting the Tlocation

of the vortex blob fo which it pertains.
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FLAME PROPAGATION

According to Idealization 3, the flame front 1is treated as an
interface across which reactants are transformed into products at a
rate controlled by the normal burning velocity., The method used for
tracing the motion of such an interface was developed by Chorin (1980)
and implemented with the help of the algorithm of Noh and Woodward
(1976).

The flow field is divided for this purpose by a grid of mesh size,
hcﬁ into square cells. The fraction of volume, V, occupied 1in a
given cell by the burned medium is expressed in terms of a number

(2.2)

where p 1is the density, while subscripts ¢, u, and b, refer,
respectively, to the property of the medium in the cell, the unburned
medium, and the burned medium,

Since, by reason of Idealization 3, the flame is treated as a
constant pressure deflagration, f can be expressed in terms of the

usual reaction progress parameter



34

T -7 T
C U 1 < C >
C = - -1 (2.3)
Tb - Tu v - 1 Tz
where
T o
v ETEEWK (2.4)
u Pb

while T can be considered to represent either absolute temperature
(if the change in molecular weight is negligible) or temperature
divided by the molecular weight.

Thus, with the use of the perfect gas equation of state, Egs.

(2.2), (2.3) and (2.4) yield

v C X
f = {2 cvm e (2.5a)
whence
f
C = v + (\) - 1) 'f: (295b>

specifying, in effect, the temperature distribution, for, as a

consequence of Idealization 2, v = const. throughout the flow field,
Thus, f = 0 or 1 means that there 1is, respectively, either

unburned or burned medium in the cell, while fractional values of f

indicate cells containing the interface. Its particular geometry is
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deduced, depending on the f numbers in neighboring cells. In this
connection, as illustrated 1in Fig. 8, proper provisions are included
in the algorithm for four possibilities:

(a) vertical interface

(b) horizontal interface

(c) rectangular corner

(d) neck
As a consequence, the interface is made up of horizontal and vertical
line segments, yielding higher spatial resolution than hc9 the mesh
size of the grid.

The motion of the interface, or flame propagation, is described by
Eq. (5). By virtue of the principle of fractional steps, its effects
are split into two components:

(a) advection, prescribed by

(b) combustion, prescribed by

33;,3';
T = Suﬂf (2a7)

providing proper set-up for the inclusion of the effects of

(c) exothermicity
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Algorithms for each of these processes are presented here in sequence.
(a) Advection

The advection step is the passive displacement due to the velocity
field., It is evaluated by calculating first the velocity components
at mid-points on the sides of the cell, as shown in Fig. 9. The
interface is then transported in two fractional steps, one horizontal
and one vertical, changing the f-number of the cell by an amount
proportional to corresponding displacements in time step, kcﬂ The
algorithm is stable whenever the Courant condition, k. < h /max|ul,
is satisfied (viz. Noh and Woodward, 1976).
(b) Combustion

The combustion step 1is the advancement of the front due to
consumption of the unburned medium. The front moves in the direction
of its normal with a relative velocity taken here as a constant, equal
to the appropriate laminar burning velocity of the mixture, Sua The
corresponding motion of the interface is evaluated by the
implementation of the Huygens' oprinciple using the advection
algorithm. At the nth computational step one calculates for this
purpose the displacements due to Su in eight directions: The four
sides and four corners of each cell, so that all of 1its neighbors are
affected, For a given cell at (i,j) this results in eight new

f-numbers. The value assigned to it is then:
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where £ = 1, . . . 8, while f§g) = f?js It should be noted
that the algorithm provides in effect information on the displacement
of the interface due to its motion at a given velocity normal to its
frontal surface, without having to determine its actual direction
(viz. Chorin, 1980).

(c) Exothermicity

Mechanical effects of the exothermic process are manifested by
volumetric expansion behind the flame front. The velocity field
induced thereby is governed by Eqs. (11) and (12) and Eq. (14).

As in the case of vortex blobs, Eg. (11) and (12) are solved by
superposition. A velocity potential, ¢, is ‘introduced for this

purpose, so that

_ 80 )
U=g5% 3 V=g (2.10)

satisfying exactly Eq. (12). The governing equation for ¢,

vl - e (2.11)

is obtained then immediately by the substitution of Eq. (2.9) into Eq.
(11).

The solution of this equation is given by

B(r) = IA G(r,r') e(r') dA (2.12)
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is the Green's function.
Following the procedure used for integrating- - Eq. (1.6), the

solution of Eg. (2.12) is approximated by the summation

= ) : .1
) % G(iﬁgﬂ) A4 (2.13)
whevre
Aj = IA. gj dA (2.14)
J

while éj is the source strength, the rate of volumetric expansion it
induces, while Ej is the Dirac delta function. As before, in order

for the summation to converge, the Green's function is smoothed around
e

The concept of a source blob is that conceived in analogy to a
vortex blob. The velocity field produced by a source blob is, in
effect, the same as that in Fig. 3. Thus, the velocity produced in a
free space by a source blob at Z, is

J

W (Z,Z,) = (2.15)
¢ J Zn Max{|Z - Zj} s o) 2= Zj)

The boundary condition expressed by Eq. (14), are satisfied by

adding the velocity produced by the image of each source on the other
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side of the wall. Thus the total velocity produced by a source blob

in the ¢-plane is given by

We(z,L) = Uglz,ng) + Uy(z,zy) (2.16)

For JS source blobs, the solution of Eq. (2.12) is then approximated
by the summation of the integral in Eg. (2.13) and the corresponding

flow velocity is

W ()= ) W.(z,5.) (2.17)

The strength of the source is adjusted so as to provide for the
volumetric expansion specified by 45 (viz. Eg. (2.14)) preserving

mass. In one-dimensional flow, as depicted in Fig. 10,

S - §
b U

where Sb is the flame speed as seen from the burned side and Su
is the flame speed seen from the burned side, whence, as a consequence

of the continuity requirement,

Sb =V S (2a19)

where

v = Qu/pb
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one has

SU

US = (\) - 1.) (2920)

The source strength is then

Ay = ugh, = =5 (v - 1) (2.21)

dv ‘ 5 dfc
-azgw = hcsu = ﬂC W (2022)
where dfc/dt is the rate of change in f due solely to combustion,

This yields:

1 2 df

AJ =5 hc(\) - 1) *aj(f‘g“ (2&23)

At the same time, with reference to Fig. 3, the source velocity is

identified with the velocity of the core

e (2.24)
0

so that, as a consequence of Eq. (2.20), one obtains
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A = ZTTY'OU = m"osu(\) - 1) (2.25)

S

Thus, by virtue of Eq. (2.23), it follows that

he
C

Y‘O = m&fc (2926)
uc

where the time derivative of f has been expressed in terms of the
change in f evaluated for a given time step, kca by the
implementation of the Huygen's principle.

By virtue of Eg. (8), volumetric sources affect the velocity
field. In particular, they modify the value of u. This in turn
induces changes in the sheet velocities, as evident from Egs. (1.25)
and (1.28), giving rise to new vortex blobs, etc. The whole algorithm
is thus interrelated, as described schematically in Fig. 3.

(d) Results

With the use of RVM a solution was obtained for turbulent flow
with combustion in the tunnel behind a step, modeling the process
recorded photographically in Fig. 1. The exothermicity of the
propane-air mixture, with equivalence ratio « = 0.5 used then, was for
this purpose expressed in terms of the temperature {(or specific
volume) ratio v = 4.25, the laminar burning velocity was taken as
§u = 12 cmf/sec, while, as before, the velocity at inlet was Uy, = 6
m/sec corresponding to R = 104,

An example of the results is presented in Fig. 11. As Fig. 7, it

consists of two sequential series of computer outputs, depicting the
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variation of vortex velocity vector fields and flame fronts. The
flame contour has been delineated for this purpose as a line of
demarcation between cells where f = 0 and those where f > 0. The
sequence in the left column depicts the process of ignition in the
turbulent flow field of Fig. 7 in a cell located at point (1,1) i.e.,
on the center line of the tunnel at a disance from the step equal to
the width of the inlet channel. The sequence in the right column
displays the "“steady flow condition" attained at time t = 26,102
(H/ng) sec., following dgnition at the Tleft bottom corner, point
(0,0), initiated at the moment when the medium was set in motion
(hence smaller number of vortex blobs). The number of computational
time steps 0.05 H/2y  sec., between the solutions displayed here was
40 for the left column and 4 for the right.

Considering the stringent idealizations on which the computations
are based, the agreement between the numerical model and the
experimental observations is indeed remarkable. The RVM is evidently
capable of reproducing the essential features of the flow field
associated with turbulent combustion as observed by schlieren
photography, providing thereby a clarification of the essential
mechanism of the process. At this stage one cannot expect, of course,
more than a qualitative agfeementa A guantitative modeling of

stochastic turbulent flow parameters has to be left for future study.
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CONCLUSIONS

Demonstrated here was the eminent suitability of RVM for the study
of the fluid mechanic properties of turbulent combustion. The main
advantage of the method is that it 1is unencumbered by numerical
diffusion. Thus, all the instabilities in the flow field, that arise
as a characteristic feature of turbulence, can be sustained without
any artificial damping, permitting their effects to be traced without
undue distortion. Moreover, by using as the building block the
mechanical properties of the essential ingredient of turbulence, the
elementary eddy, RVM is capable of modeling the intrinsic physical
properties of the flow system, subject only to restrictions introduced
at the outset by the simplifying idealizations.

As a consequence, the analysis we presented displayed the
following features of turbulent combustion:

1. fluid mechanical processes of the formation of large scale
turbulent flow structure,

2. vrationale for the role played by the intrinsic instability of
the flow system in stabilizing the flame--the basic mechanism of a
blunt body flame holder,

3. fluid mechanical processes of ignition in turbulent flow of
premixed gases,

4, detailed features of entrainment and mixing as principle means
for the control of the combustion process,

5. the mechanism of exothermic processes in turbulent combustion.
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APPENDIX I
VORTEX MOTION IN THE TRANSFORMED PLANE
Trajectories of the vortices in the transformed g-plane are
required in order to evaluate the velocity W(Z) using Eg. (1.10) and
Eg. (1.12). This can be obtained by a stepwise conformal mapping of

trajectories in the Z-plane, defined by Eq. (1.17), using the inverse

of the transformation function Z = Z(t¢), the integral form of
Eg. (1.11)
2(z) = fa_@i?_w | (1.1)
F(z)

which, for the geometry of Fig. 6 is

_H 1 +q 1 2 *+q
where
NN
1=N1T==¢

However, the inverse of the above

L = 5(Z) (1.2)

is awkward and lengthy to evaluate. Hence one has to resort to
numerical methods to integrate Eq. (1.11) directly in order to
calculate corresponding displacements in the z-plane of those in the

Z-plane.
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This procedure can be reduced substantially if one uses Eg. (1.18)
to trace these vortices in the ¢-plane directly, thus eliminating the
use of the Z-plane except for the presentation of the results. This

equation is obtained from Eq. (1.12) to write W(Z) in terms of ¢ as

W(Z) = W(z) F2) = W(o) Fz) (1.3)

If ¢(t) 1is defined to be the map of Z(t), then

a(t) = o(z(t)) (1.4)
and one can write

c{t + k) - c(t) = c(Z(t + k) - ¢(Z(t))
or, taking the first term of the Taylor series expansion,

c(t + k) - o) = {2t + k) - 2(0)) & (1.5)

If Z s a vortex center, then Eq. (1.17) specifies the change in
L., Using Eg. (I.3), Eg. (1.11) and rearranging one obtains Eq.
(1.18) as
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Fg. (I.6), along with Eq. (1.10) provide all the necessary information
about the flow field. It is of interest to note that the effect of
the geometry of the Z-plane on the motion in the Z-plane is preserved

in terms of F and E in Eq. (1.6).
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APPENDIX I1I
DERIVATION OF EQUATION (2.23)
The total volume created by a set of sources distributed on the
surface of a flame should provide for the extra volume on the side of
products due to the expansion of reactants as they burn. If the fluid

Teaves a source with a velocity u. normal to the surface of the

S
flame, then
dV[
— = u_n.edA (I11.1)
dt f §—f “=f
where dV/dt = rate of volume increase due to the sources and Af =

area of the flame surface. For two dimensional flow, d,é\f =
Nedle where Lg is the length of the flame front and both V and
Ag are measured per unit Tlength normal to the plane of the flow.
Since Ug is constant for homogeneous systems as indicated by Eq.
(2.18), it follows that

av ( neendh

ar = Us ) nedle = ust (11.2)

The propagation of the flame due to combustion, the reason of

volume expansion, is expressed by the left hand side of Eq. (5),

v ¢

ﬁ‘ﬁﬂfsu (I:[a3>
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When integrating the above equation of the flame surface Rgs it

specifies the rate of volume combustion as

[ o ¢
— dA = I S n. dA (11.4)
£ 3t - f u—f "=

The left hand side of this equation can be written as

g
'gﬁmzjf ’5‘{*“* dAf- = .X'hc?l“%““‘” (zIo5)

i and J cover the whole flow area and the flow 1is assumed two
dimensional. The integral in the right hand side of Eq. (Il.4) is
evaluated by assuming a constant Sug yielding a similar expression

as that of Eq. (I11.2). Thus Eq. (1I.4) becomes

df

2
oz'hc-affizsut_f (11.6)
i,

One can write
dy ;
= ) A
ae gy
and by eliminating L,_F between Eq. (II.6) and Eq. (2) it follows that

df :
e (I1.7)
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However, from Eq. (2.18) and Eq. (2.19), one has

S

LAS::M% (v = 1)

and Eq. (2.23) follows immediately. By using Eq. (II.7), one avoids
calculating the flame length as required by Eq. (I1.2). Instead one
uses the computations of the combustion step in the flame propagation
algorithm, described before, to obtain the rate of conversion of

reactant's volume due to combustion as indicated in Eg. (II.5).
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APPENDIX IT1I
CONSERVATION OF CIRCULATION IN A VARIABLE DENSITY FIELD

The flame front, according to the model presented here, is a
constant pressure discontinuity across which a sudden change in
density occurs. In the following finite vortices, or vortex blobs,
are  found to conserve their circulation upon crossing this
discontinuity. The proof is limited to two-dimensional situations.

In a two dimensional potential flow, with variable density, the

vortex transport equation, (Eq. (2.6) in Chorin and Marsden 1979).

B (Ele) =0 (111.1)

expresses the variation of vorticity with density along a particle

path. However, the variation of the circulation, given by

B = Be [ eon = B | (ero) oon (111.2)

can be calculated by reversing the integration and differentiation in

the above expression as

S [ B terod pan + [ 510 B (oon) (111.3)

However, pdA = constant along a particle path and, taking Eq. (III.1)

into account,
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Dr
DT (111.4)

Thus, since vortex blobs follow particle paths, their circulation in a

variable density field is invariant.
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FIGURE CAPTIONS

Cinematographic schlieren records of turbulent combustion

stabilized behind a step in a propane-air mixture at an

equivalence ratio k = 0.57, entering the channel at U, =

13.6 m/sec (Re = 22 x 10%) while T_ = 295°K (from Sawyer

and Ganji, 1980).

(a) growth of a large eddy wunder the influence of
recirculation (time interval between frames: 1.22
msec).

(b) “"steady state® propagation of a large  scale
("coherent") structure (time finterval between frames:
1.16 msec).

Structure of the algorithm.

Velocity distribution of a blob.

Geometry of interdependence in the numerical shear layer

A — zone of dependence over point i

B - zone of influence under sheet j
C - zone of dependence around point i + 1/2
D - zone of dependence around point i - 1/2

Transformations of vortex elements in and around a numerical
shear layer at the wall.
Streamlines pattern of initial flow in transformed plane and

physical plane of a channel with a step expansion,
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10.

11.

57

Sequential series of computer plots displaying vortex
velocity fields in turbulent flow behind a step at inlet R =
10%,
(a) development of the flow field
(b) growth of a large scale eddy
Elementary components of an interface recognized by the
algorithm,
Velocity components wused in the advection algorithm to
determine the motion of the interface in cell (i,j).
Kinematics of the flame front
tangent to the flame front at point i

~~~~~~~ tangents to particle paths at point i
Sequential series of computer plots displaying vortex
velocity fields and flame fronts in turbulent combustion
behind a step at R = 10" while S, = 0.02 and v = 4.25,
corresponding to a propane-air mixture at K = 0.5.
(a) dignition at point (1,1) in a fully developed turbulent

flow

(b) "steady state" turbulent flame propagation.
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